Platelets are critical for hemostasis, i.e., the body's ability to prevent blood loss at sites of vascular injury. They patrol the vasculature in a quiescent, non-adhesive state for approximately 10 days, after which they are removed from circulation by phagocytic cells of the reticulo-endothelial system. At sites of vascular injury, they promptly shift to an activated, adhesive state required for the formation of a hemostatic plug. The small GTPase RAP1 is a critical regulator of platelet adhesiveness. Our recent studies demonstrate that the antagonistic balance between the RAP1 regulators, CalDAG-GEFI and RASA3, is critical for the modulation of platelet adhesiveness, both in circulation and at sites of vascular injury. The RAP1 activator CalDAG-GEFI responds to small changes in the cytoplasmic calcium concentration and thus provides sensitivity and speed to the activation response, essential for efficient platelet adhesion under conditions of hemodynamic shear stress. The RAP1 inhibitor RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI-dependent RAP1 activation. Upon cellular stimulation, it is turned off by P2Y12 signaling to enable sustained RAP1 activation, required for the formation of a stable hemostatic plug. This review will summarize important studies that elucidated the signaling pathways that control RAP1 activation in platelets.

RAP1-GTPase signaling and platelet function / Stefanini, Lucia; Bergmeier, Wolfgang. - In: JOURNAL OF MOLECULAR MEDICINE. - ISSN 0946-2716. - STAMPA. - 94:1(2018), pp. 13-19. [10.1007/s00109-015-1346-3]

RAP1-GTPase signaling and platelet function

Stefanini, Lucia;
2018

Abstract

Platelets are critical for hemostasis, i.e., the body's ability to prevent blood loss at sites of vascular injury. They patrol the vasculature in a quiescent, non-adhesive state for approximately 10 days, after which they are removed from circulation by phagocytic cells of the reticulo-endothelial system. At sites of vascular injury, they promptly shift to an activated, adhesive state required for the formation of a hemostatic plug. The small GTPase RAP1 is a critical regulator of platelet adhesiveness. Our recent studies demonstrate that the antagonistic balance between the RAP1 regulators, CalDAG-GEFI and RASA3, is critical for the modulation of platelet adhesiveness, both in circulation and at sites of vascular injury. The RAP1 activator CalDAG-GEFI responds to small changes in the cytoplasmic calcium concentration and thus provides sensitivity and speed to the activation response, essential for efficient platelet adhesion under conditions of hemodynamic shear stress. The RAP1 inhibitor RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI-dependent RAP1 activation. Upon cellular stimulation, it is turned off by P2Y12 signaling to enable sustained RAP1 activation, required for the formation of a stable hemostatic plug. This review will summarize important studies that elucidated the signaling pathways that control RAP1 activation in platelets.
2018
GTPase; Platelets; RAP1; Signaling; Thrombosis; Molecular Medicine; Drug Discovery3003 Pharmaceutical Science; Genetics (clinical)
01 Pubblicazione su rivista::01g Articolo di rassegna (Review)
RAP1-GTPase signaling and platelet function / Stefanini, Lucia; Bergmeier, Wolfgang. - In: JOURNAL OF MOLECULAR MEDICINE. - ISSN 0946-2716. - STAMPA. - 94:1(2018), pp. 13-19. [10.1007/s00109-015-1346-3]
File allegati a questo prodotto
File Dimensione Formato  
Stefanini_Platelets 2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 883.26 kB
Formato Adobe PDF
883.26 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/871360
Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 64
social impact